6 research outputs found

    Structured Light Transmission under Free Space Jamming: An Enhanced Mode Identification and Signal-to-Jamming Ratio Estimation Using Machine Learning

    No full text
    In this paper, we develop new classification and estimation algorithms in the context of free space optics (FSO) transmission. Firstly, a new classification algorithm is proposed to address efficiently the problem of identifying structured light modes under jamming effect. The proposed method exploits support vector machine (SVM) and the histogram of oriented gradients algorithm for the classification task within a specific range of signal-to-jamming ratio (SJR). The SVM model is trained and tested using experimental data generated using different modes of the structured light beam, including the 8-ary Laguerre Gaussian (LG), 8-ary superposition-LG, and 16-ary Hermite Gaussian (HG) formats. Secondly, a new algorithm is proposed using neural networks for the sake of predicting the value of SJR with promising results within the investigated range of values between −5 dB and 3 dB

    Structured Light Transmission under Free Space Jamming: An Enhanced Mode Identification and Signal-to-Jamming Ratio Estimation Using Machine Learning

    No full text
    In this paper, we develop new classification and estimation algorithms in the context of free space optics (FSO) transmission. Firstly, a new classification algorithm is proposed to address efficiently the problem of identifying structured light modes under jamming effect. The proposed method exploits support vector machine (SVM) and the histogram of oriented gradients algorithm for the classification task within a specific range of signal-to-jamming ratio (SJR). The SVM model is trained and tested using experimental data generated using different modes of the structured light beam, including the 8-ary Laguerre Gaussian (LG), 8-ary superposition-LG, and 16-ary Hermite Gaussian (HG) formats. Secondly, a new algorithm is proposed using neural networks for the sake of predicting the value of SJR with promising results within the investigated range of values between −5 dB and 3 dB

    Machine Learning Based Low-Cost Optical Performance Monitoring in Mode Division Multiplexed Optical Networks

    No full text
    Real-time optical performance monitoring (OPM) is of the utmost importance in adaptive optical networks to enable awareness of channel conditions and to achieve high quality of service. In single-mode fiber (SMF)-based networks, optical signal-to-noise ratio (OSNR) and chromatic dispersion (CD) monitoring have been extensively studied in the literature. In this work, we consider OPM in few-mode fiber (FMF) networks employing non-coherent detection. OPM in such networks is a challenging task, as FMF has an additional performance-limiting impairment over SMF, namely mode coupling (MC). Here, we propose an OPM scheme to estimate three FMF channel parameters: OSNR within the range of 8 to 20 dB, CD within the range of 160 to 1120 ps/nm, and different levels of MC. The proposed scheme uses a stacked auto-encoder (AE) to extract features with reduced dimensionality compared to the original data. These features are used to train an artificial neural network (ANN) regressor. Simulation results show that the proposed OPM scheme can accurately estimate the OSNR, CD, and MC with root mean square error (RMSE) values of 0.0015 dB, 0.28 ps/nm, and 7.88 × 10−6, respectively. The performance of proposed OPM scheme is also evaluated against different types of features commonly used in literature

    Machine Learning Based Low-Cost Optical Performance Monitoring in Mode Division Multiplexed Optical Networks

    No full text
    Real-time optical performance monitoring (OPM) is of the utmost importance in adaptive optical networks to enable awareness of channel conditions and to achieve high quality of service. In single-mode fiber (SMF)-based networks, optical signal-to-noise ratio (OSNR) and chromatic dispersion (CD) monitoring have been extensively studied in the literature. In this work, we consider OPM in few-mode fiber (FMF) networks employing non-coherent detection. OPM in such networks is a challenging task, as FMF has an additional performance-limiting impairment over SMF, namely mode coupling (MC). Here, we propose an OPM scheme to estimate three FMF channel parameters: OSNR within the range of 8 to 20 dB, CD within the range of 160 to 1120 ps/nm, and different levels of MC. The proposed scheme uses a stacked auto-encoder (AE) to extract features with reduced dimensionality compared to the original data. These features are used to train an artificial neural network (ANN) regressor. Simulation results show that the proposed OPM scheme can accurately estimate the OSNR, CD, and MC with root mean square error (RMSE) values of 0.0015 dB, 0.28 ps/nm, and 7.88 × 10−6, respectively. The performance of proposed OPM scheme is also evaluated against different types of features commonly used in literature

    Machine Learning-Based Optical Performance Monitoring for Super-Channel Optical Networks

    No full text
    In this paper, and for the first time in literature, optical performance monitoring (OPM) of super-channel optical networks is considered. In particular, we propose a novel machine learning OPM technique based on the use of transformed in-phase quadrature histogram (IQH) features and support vector regressor (SVR) to estimate different optical parameters such as optical signal-to-noise ratio (OSNR) and chromatic dispersion (CD). Two transformation methods, the two-dimensional (2D) discrete Fourier transform (DFT) and 2D discrete cosine transform (DCT), are applied to the IQH to extract features with a considerably reduced dimensionality. For the purpose of simulation, the OPM of a 7 × 20 Gbaud dual-polarization–quadrature phase shift keying (DP-QPSK) is considered. Simulations reveal that it can accurately estimate the various optical parameters (i.e., OSNR and CD) with a coefficient of determination value greater than 0.98. In addition, the effectiveness of proposed OPM scheme is examined under different values of polarization mode dispersion and frequency offset, as well as the utilization of different higher order modulation formats. Moreover, proof-of-concept experiments are performed for validation. The results show an excellent matching between the simulation and experimental findings

    Deep Learning-Based Image Denoising Approach for the Identification of Structured Light Modes in Dusty Weather

    No full text
    Structured light is gaining importance in free-space communication. Classifying spatially-structured light modes is challenging in a dusty environment because of the distortion on the propagating beams. This article addresses this challenge by proposing a deep learning convolutional autoencoder algorithm for modes denoising followed by a neural network for modes classification. The input to the classifier was set to be either the denoised image or the latent code of the convolutional autoencoder. This code is a low-dimensional representation of the inputted images. The proposed machine learning (ML) models were trained and tested using laboratory-generated mode data sets from the Laguerre and Hermite Gaussian mode bases. The results show that the two proposed approaches achieve an average classification accuracy exceeding 98%, and both are better than the classification accuracy reported recently (83–91%) in the literature
    corecore